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Abstract 
Monitoring forest areas with satellite data has become a vital tool to derive information on disturbances in European forests at large 
scales. An extensive validation of generated maps is essential to evaluate their potential and limitations in detecting various disturbance 
patterns. Here, we present the validation results of forest disturbance maps generated for four study areas in Germany using Sentinel-
2 data from 2018 to 2022. We apply a time series filtering method to map annual forest disturbances larger than 0.1 ha based on 
spectral clustering and annual change magnitude. The presented method is part of a research study to design a precursor for a national 
German forest disturbance monitoring system. In this context, annual forest change areas are used to estimate affected timber volume 
and related economic losses. To better understand the thematic accuracies and the reliability of the area estimates, we performed an 
independent and extensive validation of the annual product using 20 validation sets embedded in our four study areas and comprising 
a total of 11 019 sample points. The collected reference datasets are based on an expert interpretation of high-resolution aerial and 
satellite imagery, including information on the dominant tree species, disturbance cause, and disturbance severity level. Our forest 
disturbance map achieves an overall accuracy of 99.1 ± 0.1% in separating disturbed from undisturbed forest. This is mainly indicative 
of the accuracy for undisturbed forest, as that class covers 97.2% of the total forest area. For the disturbed forest class, the user’s 
accuracy is 84.4 ± 2.0% and producer’s accuracy is 85.1 ± 3.4% for 2018 to 2022. The similar user’s and producer’s accuracies indicate 
that the total disturbance area is estimated accurately. However, for 2022, we observe an overestimation of the total disturbance extent, 
which we attribute to the high drought stress in that year leading to false detections, especially around forest edges. The accuracy 
varies widely among validation sets and seems related to the disturbance cause, the disturbance severity, and the disturbance patch 
size. User’s accuracies range from 31.0 ± 8.4% to 98.8 ± 1.3%, while producer’s accuracies range from 60.5 ± 37.3% to 100.0 ± 0.0% across 
the validation sets. These variations highlight that the accuracy of a single local validation set is not representative of a region with a 
large diversity of disturbance patterns, such as Germany. This emphasizes the need to assess the accuracies of large-scale disturbance 
products in as many different study areas as possible, to cover different patch sizes, disturbance severities, and disturbance causes. 

Introduction 
Forests provide a myriad of ecological, economic, and climatic 
benefits, all of which are influenced by both natural and climate-
driven disturbances. Natural disturbances, such as wild fires, 
insect infestations, and windthrows, are an integral part of ecosys-
tem dynamics in forests around the globe (Turner, 2010). Climate-
driven changes in disturbance regimes and a decreasing adaptive 
capacity of forests, both occurring at an accelerating rate, have 
been observed worldwide (Hoegh-Guldberg et al., 2018, Senf and 
Seidl, 2021a). According to Patacca et al. (2022), a substantial 
increase in the occurrence and severity of disturbances has been 
observed in European forest ecosystems since the 1950s. Collect-
ing reliable and ongoing information on forest disturbances is 
key for future ecological pathways of forest management and 
increased forest resilience (Senf and Seidl, 2021a). 

Ground-based data are considered the gold standard for detect-
ing forest disturbances, but its availability is often temporally 
and spatially limited (Bowman et al., 2013). Hence, remote sensing 
data and technologies have been widely used to detect forest 
disturbances in the last decades across different scales at high 
spatial and temporal resolutions (Stahl et al., 2023). Reliable and 
operational methods for mapping forest disturbances over large 
areas have lately become increasingly important for sustainable 
forest management (Hirschmugl et al., 2017). Nowadays, besides 
Landsat, an increasing number of new satellite constellations, 
such as Sentinel-1 and -2, PlanetScope, and WorldView-3, meet 
the necessary requirements by providing higher spatial, temporal, 
and spectral resolutions compared with those of sensors from ear-
lier decades (Ustin and Middleton, 2021). Moreover, improvements 
in computing performance and machine learning algorithms have
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facilitated advancements in the process of detecting forest dis-
turbances (Zhu et al., 2020). Recently, the open-access Copernicus 
Sentinel data have been used extensively to detect and monitor 
forest disturbances in Europe, e.g. for multiple disturbance agents 
(Francini et al., 2022; Candotti et al., 2022; Senf and Seidl 2021b, 
Schiefer et al., 2023), windthrows (Rüetschi et al., 2019; Puhm et al., 
2020; Laurin et al., 2021; Giannetti et al., 2021), and bark beetle 
infestations (Fernandez-Carrillo et al., 2020; Bárta et al., 2021; 
Dalponte et al., 2022). 

A variety of algorithms for different aspects of optical forest 
monitoring were developed in recent years, including: BFAST 
(Verbesselt et al. 2010), LandTrendr (Kennedy et al. 2010), Vegeta-
tion Change Tracker (Huang et al., 2010), CCDC (Zhu and Wood-
cock, 2014), BEAST (Zhao et al., 2019), CODED (Bullock et al., 2022), 
EWMACD (Brooks et al. 2014), Edyn (Brooks et al., 2017), AVOCADO 
(Decuyper et al., 2022), NRT-MoNITOR (Shang et al., 2022), ForWarn 
II (e.g. Norman and Christie, 2020), and FORDEAD (Dutrieux et al., 
2021a). An overview of forest monitoring methods is also provided 
in Hirschmugl et al. (2017) and Gao et al. (2020). Hirschmugl et al. 
(2017) highlight the importance of preprocessing the satellite data, 
such as cloud detection and radiometric correction, which we also 
emphasize in this study. 

International forest disturbance products of different scales 
include the Global Forest Watch (2023) datasets, which are either 
derived from Landsat (GLAD alerts; Hansen et al., 2013) or from  
Sentinel-2 data (GLAD-S2 alerts) and are combined with the 
Sentinel-1-based RADD alerts (Reiche et al., 2021). Many other 
national and regional forest monitoring products are available 
such as the SAR-based DETER-R (Doblas et al., 2022a). For details 
on other SAR-based near-real-time operational forest disturbance 
detection systems produced by various research agencies (INPE, 
in Brazil, CESBIO, in France, JAXA, in Japan, and Wageningen 
University, in the Netherlands), we refer to a recent study 
comparing various algorithm results with the GLAD-S2 mapping 
performance (Doblas et al., 2022b). 

In the last few years, Germany was hit hard by widespread 
forest disturbances due to storms, prolonged periods of drought, 
and insect pests. Between 2018 and 2022 alone, an estimated area 
of 490 km2 was affected, resulting in 255 million m3 of damaged 
timber (BMEL, 2022). The estimated economic loss to the German 
forestry sector exceeded 12.7 billion euros between 2018 and 
2020 (Möhring et al., 2021). Consequently, various actors in the 
field of remote sensing in the research, private, and commercial 
sectors are currently engaged in assessing forest disturbances. 
Several nationwide products for forest vitality and disturbance 
detection exist, most of which can be accessed online: (i) annual 
forest disturbances between 1986 and 2020 are available for all of 
Germany as part of the European forest disturbance map based 
on Landsat data (Senf and Seidl, 2021a). (ii) The European Forest 
Condition Monitor (2023) is intended to visualize the condition of 
forests in Germany and Europe by determining the greenness of 
the vegetation and comparing it to long-term observations using 
MODIS data (Buras et al., 2021). (iii) Nationwide tree canopy loss 
information between January 2018 and April 2021 was provided 
by Thonfeld et al. (2022). Their analysis was based on monthly 
image composites of the disturbance index derived from Sentinel-
2 and Landsat-8 time series. (iv) Forestwatch-DE (2023) reports 
annual changes in the vitality of forests as a service. Their anal-
ysis is based on vegetation indices derived from Sentinel-2 data 
and compared with the reference year 2017. (v) Waldmonitor 
Deutschland (2023) provides nationwide information on forest 
damage areas (2017–23), dominant tree species, forest vitality 
trends between 2016 and 2021, and drought stress indicators 

based on Sentinel-2 data. A very detailed overview of earth obser-
vation based forest monitoring activities in German is given in 
Holzwarth et al. (2023). 

Undoubtedly, these products are valuable resources to derive 
annual to intra-annual information on disturbances at the 
national level. However, some limitations exist. Besides the 
limited spatial coverage of the products, their limitations are 
mainly related to the transparency of their quality assessment. All 
products suffer in some way from incomplete documentation, the 
absence of different disturbance categories, the use of different 
forest definitions, or the absence of independent validation 
procedures. 

A uniform, timely, and up-to-date reporting of forest distur-
bances at the national level is necessary for optimal crisis man-
agement of forest disturbances and the associated measures of 
politics, economy, and society for the adaptation of forest ecosys-
tems in Germany. So far, forest disturbance data are collected 
by the Federal States and compiled by the Federal Ministry of 
Food and Agriculture at the national level, due to the lack of a 
corresponding operational national system. Due to different pro-
cedures of the actors involved, collecting complete, uniform, and 
reliable information about forest disturbances remains a chal-
lenging and often slow process. To overcome these problems, the 
Federal Ministry of Food and Agriculture commissioned the devel-
opment of a novel, highly automated approach for the nationwide 
monitoring of forest disturbances. As a result, the Fernerkun-
dungsbasiertes Nationales Erfassungssystem für Waldschäden 
(FNEWS, https://www.fnews-wald.de/en/) project was initiated 
with the aim of timely detection of disturbed areas in order to 
quantify the salvage timber volume across Germany based on 
open remote sensing data. 

Our annual forest disturbance product uses a straightforward 
approach based on freely available multispectral Sentinel-2 data 
at a 10-m spatial resolution. Our definition of forest disturbance 
includes both natural causes, resulting from windthrow, drought, 
insect pests, and non-natural causes, resulting from salvage log-
ging or regular forest practices. Our method generates a filtered 
time series (Puhm et al., 2020), removes low-quality pixels, and 
detects forest disturbances based on the changes in reflectance 
accompanied by reduced vitality. We acquired high-resolution 
reference imagery for four representative study areas. From this 
imagery we created a detailed set of training data of different for-
est disturbances. Moreover, we generated 20 validation sets from 
this imagery, covering many different forest types and disturbance 
patterns. We validated and analyzed the product in diverse parts 
of our study areas, and transparently documented the validation 
process. 

The main objective of this article is to present a reliable 
annual forest disturbance monitoring approach for Germany and 
to assess the thematic accuracy and spatial estimates of the 
annual product. Due to the high environmental heterogeneity of 
Germany, the system is likely to be transferable to other central 
European countries. 

Materials and Methods 
Study areas 
We conducted the study in four typical forest areas of Germany: 
(A) southern Lower Saxony, (B) Saxony, (C) south-western Baden-
Wuerttemberg, and (D) northern Bavaria (Fig. 1). These areas 
cover a wide range of tree species, age classes, forest structures, 
and site conditions (Table 1). Between January 2018 and August 
2022, storms, drought, and heavy bark beetle infestations led 
to persistent forest disturbances. In total, the study areas cover
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Figure 1. We used four study areas covering up to two Sentinel-2 tile footprints: (A) southern Lower Saxony, (B) Saxony, (C) south-western 
Baden-Wuerttemberg, and (D) northern Bavaria. Each study area consisted of three to seven validation sets, shown here with their validation year. 
Each validation set contained several hundred sample points. 

Table 1. Summarized characteristics of the four study areas. The annual precipitation represents the mean from 1981 to 2010 (DWD); 
the forest cover is based on Langner et al. (2022), and the disturbance type is based on our reference imagery. 

Study area Elevation 
[m a.s.l.] 

Annual 
precipitation [mm] 

Forest 
cover [%] 

Disturbance types 

A Southern Lower Saxony 5–927 585–1760 37 Windthrow, bark beetle 
B Saxony 73–1215 562–1242 28 Windthrow, bark beetle 
C South-western Baden-Wuerttemberg 119–1493 508–2015 77 Windthrow, bark beetle 
D Northern Bavaria 102–1045 530–1338 40 Windthrow, bark beetle, complex disturbance 

∼2 407 000 ha (22%) of the national stocked forest area in 
Germany. We performed both training and validation inside these 
study areas. The following information regarding disturbance 
types and tree species composition originate from the state 
institutes of forestry of each state including (A) the Northwest 
German Forest Research Institute (NW-FVA), (B) the Competence 
Centre for Wood and Forestry in Saxony (SBS), (C) the Forest 
Research Institute Baden-Wuerttemberg (FVA-BW) and (D) the 
Bavarian State Institute of Forestry (LWF). 

In study area (A) in southern Lower Saxony, homogeneous 
stands of Norway spruce (Picea abies) occur predominantly at 
higher elevations in the Harz mountains, which is partly protected 
as a National Park. Forests in this region were profoundly hit 
by storm Friederike (18 January 2018), and spruce stands were 
heavily affected by bark beetle (Scolytinae) infestations in recent 
years. 

In study area (B) in Saxony, the predominant tree species in the 
region are Scots pine (Pinus sylvestris) in the north and Norway 
spruce (P. abies) in the south, which thrive in both mixed forests 
and pure stands. The study area includes the Saxon Switzer-
land National Park, where forest management is strictly limited 

to roads and hiking trails, to preserve the park’s natural state. 
Saxony experienced notable consequences of the winter storm 
Friederike (18 January 2018) and the autumn storm Fabienne (23 
September 2018), with scattered damage rather than widespread 
devastation. Bark beetle (Scolytinae) infestations in subsequent 
years led to both scattered damage and, in certain instances, 
substantial disturbance events. 

Most forest in study area (C) in south-western Baden-
Wuerttemberg is commercially managed. Exceptions include the 
Black Forest National Park. Norway spruce (P. abies) and silver fir 
(Abies alba) are the dominant species in the Black Forest, whereas 
European beech (Fagus sylvatica) is dominant in most other parts 
of the study area. Further species include oak (Quercus spp.) and 
Douglas fir (Pseudotsuga menziesii). Most of the forest damage in 
this region is due to bark beetles (Scolytinae). The combination 
of multiple dry summers and severe storms, including Eleanor 
(3 January 2018) and Friederike (18 January 2018), weakened the 
forest, which led to infestation by this pest. Scattered small-scale 
forest disturbances throughout the state are the consequence 
with some differences in distribution patterns across the state 
due to tree species composition and geography.
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The dominant tree species in study area (D) in northern Bavaria 
are European beech (F. sylvatica) and oak (Quercus spp.) in the  
center, Scots pine (P. sylvestris) in the south, and Norway spruce 
(P. abies) in the east. This study area has seen a multitude of 
disturbance types, including windthrow from the summer storms 
Fabienne (23 September 2018) and Bernd (18 August 2019), com-
plex disturbance on beech stands in 2019, gypsy moth (Lymantria 
dispar) infestation on oak stands in 2018 and 2019, and continual 
bark beetle (Scolytinae) infestation of spruce since 2019. The dis-
turbance severity ranges from scattered complex disturbance to 
large-scale windthrows and disturbances related to bark beetle 
infestation. 

Data and methods 
Our disturbance product builds on three Sentinel-2 bands with a 
10-m spatial resolution, namely, bands 3, 4, and 8 corresponding 
to the green, red, and near-infrared spectra. The value of band 
2 (blue) for detecting forest disturbances is limited because 
of its high sensitivity regarding atmospheric artefacts and 
therefore unfavorable signal-to-noise ratio (SNR). We tested the 
integration of other Sentinel-2 bands with lower spatial resolution 
in the development phase, but ultimately decided to use a set 
of bands with homogeneous spatial resolution for the final 
product. 

The disturbance analysis only considers forest pixels based 
on the stocked forest area map (Langner et al., 2022). This map 
is based on Sentinel-2 imagery from 2018 and displays stocked 
forest areas in Germany of at least 0.25 ha and a coverage of at 
least 50%, with an overall accuracy of 96.5%. In the following, we 
refer to this stocked forest area map as the forest map. To generate 
the annual disturbance product, we evaluate a dense time series 
of Sentinel-2 data using a fully automated processing chain. The 
processing chain is divided into three parts: preprocessing, time 
series filtering, and disturbance map updating. 

The first part is image preprocessing, in which a cloud mask is 
first calculated for all available top-of-atmosphere (TOA) images 
using the Fmask algorithm (Qiu et al., 2019). Further image pre-
processing continues only if a defined minimum percentage (e.g. 
10%) of valid pixels is present after cloud masking. We con-
sider pixels classified as cloud, cloud shadow, or snow as invalid. 
When a sufficient fraction of valid pixels is present, atmospheric 
correction follows using the sen2cor software provided by the 
European Space Agency (Louis et al., 2016). The result is data 
of processing level L2A, which radiometrically corresponds to a 
calibrated bottom-of-atmosphere (BOA) reflection. After atmo-
spheric correction, the next step is to perform an improvement 
of the geometric positional accuracy of the images with respect 
to each other. For this purpose, a cloud-free reference image is 
selected for each tile. A coregistration process adjusts each image 
of the time series stack in its position to the reference image. 
For a given image pair, the coregistration process evaluates the 
cross-correlation of the red spectral band at regularly spaced 
sample locations (spacing: 1 km) using a search window of 7 by 
7 pixels. Sample locations are discarded where either the cross-
correlation maximum is below 0.7 or the back-matching distance 
exceeds one pixel. For all remaining samples, we use the sub-pixel 
offsets of the cross-correlation maximum in x and y direction to 
estimate the coefficients of an eight-parameter projective trans-
formation polynomial through least squares adjustment. Finally, 
we apply the estimated transformation to all image bands using 
bicubic interpolation. In the next step of preprocessing, invalid 
pixels are masked out based on the Fmask classification result. 
Finally, the Minnaert method (Gallaun et al., 2007) is used to  

perform a topographic correction. The underlying terrain model 
is the Copernicus Digital Elevation Model (COP-DEM), which is 
available for Europe in 30-m resolution (European Space Agency, 
2021). As part of the topographic correction, a BRDF correction 
(bidirectional reflectance distribution function) is also performed, 
which compensates for systematic effects due to different viewing 
angles depending on the satellite orbit (Roy et al., 2017). 

For time series filtering, we use the method described by Puhm 
et al. (2020), which builds on a structural time series model and 
Kalman filtering (KF, Harvey, 1989) for use with Sentinel-2 surface 
reflectance signals. Structural time series models provide the 
means to decompose an input signal into additive components 
such as trend and seasonality. The operation of the KF is recursive, 
meaning that the time series is processed one image at a time. 
Each recursion consists of two steps: the time update and the 
measurement update. In the time update, a model prediction of 
the expected reflectance at the time of acquisition of the current 
image is made, starting from the date of the last processed image. 
In the measurement update, the model prediction (and with it the 
model parameters) is corrected by integrating the current data. 
For the correct representation of seasonal signal components, it 
is necessary to process a multi-year historical time series to train 
the model. 

After the training phase, KF provides two outputs for each new 
image available in the monitoring phase, which are used for the 
later derivation of the products in the last part of the processing 
chain. On the one hand, these are the so-called innovations, which 
represent statistically normalized differences between the model 
predictions and the actually observed signal values. On the other 
hand, filtered versions of the input images are produced, which we 
deem to have favourable properties for annual large-scale forest 
disturbance mapping. Gaps in the original images caused by cloud 
masking are filled by the model predictions, and the remaining 
signal noise is reduced. Through measurement updates, sustained 
signal changes caused by forest disturbances are also visible in the 
filtered images with a certain delay. However, a challenging prop-
erty of the signals used here is that they contain not only normally 
distributed Gaussian noise but also outliers due to unmasked 
clouds, cloud shadows, or snow as well as systematic influences 
of smaller magnitudes due to poor atmospheric conditions (haze, 
heightened aerosol levels, adjacent clouds). 

When the full near-real-time signal-tracking capability of the 
KF or comparable methods is unlocked, the existence of these sig-
nal artefacts creates a dilemma. At filter runtime, both artefacts 
and changes of the ground state, e.g. phenology shifts or distur-
bances, manifest themselves in the form of larger-than-normal 
innovations. Therefore, advanced signal tracking and noise reduc-
tion requires a highly reliable assessment of each innovation’s 
trustworthiness. On the one hand, all innovations corresponding 
to signal artefacts should be ignored or down-weighted, but on 
the other hand, innovations corresponding to changes of the 
ground state should be used with full weight in the measurement 
update. In our experience, semi-transparent artefacts from clouds 
or haze are often not accounted for at all by traditional cloud 
masks. However, semi-transparent clouds and haze occur quite 
frequently in Germany. 

We therefore developed a new approach to quantify signal 
quality in order to increase the robustness of the time series 
filtering and the products based on it against these effects. The 
intention is to produce a pixel-wise continuous quality index 
instead of a binary mask derived from typical hard classification 
approaches. In its current state of development, the concept 
is tailored to forest applications and therefore makes use of
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Figure 2. Panel A shows a true-color aerial image (Orthofoto Österreich, 2023) with a coordinate marker in the center. In Panel B, temporal profiles of 
the tasselled cap (TC) transformation features TC5 and brightness are plotted for the broadleaved forest pixel marked in Panel A. We show all 
Sentinel-2 observations acquired in 2018 for tile 33UWP, relative orbit 122. The blue lines represent harmonic first-order models based on clear 
observations. Vertical dashed lines represent examples of model residuals, which are mapped to a quality degradation index using a piecewise linear 
function indicated in Panel C. We refer the reader to the text for a detailed explanation of the observation labels in Panel B and the parameters of the 
function in Panel C. 

simplified assumptions. We propose to group signal artefacts into 
‘bright’ (atmospheric, snow) and ‘dark’ (shadows) categories and 
claim that the specific properties of two features of the tasselled 
cap transformation ( Crist, 1985) are particularly useful for 
detecting signal interference caused by them. It is assumed that 
signal interference from cloud shadows correlates with a drop 
in observed Tasselled Cap Brightness (TCB) and that the normal 
TCB level of a forest pixel is approximated sufficiently accurate 
by a first-order harmonic model. Large negative model residuals 
correspond to an increased quality degradation. The second 
assumption is that atmospheric artefacts or snow correlate with a 
drop in the fifth feature of the tasselled cap transformation (TC5). 
Fig. 2 gives examples of both assumptions by showing time series 
of TC5 and TCB over 1 year including a thematic label of each 
observation in Panel B. The respective pixel location is described 
by Panel A. The interpretation of TC5 is less intuitive than that 
of TCB, but the high sensitivity of this feature can be explained 
by the high negative weighting of the blue spectral band in the 
transformation. Moreover, it is a low-order feature, which means 
that most of the normal non-artefact signal dynamics of forest 
pixels are already contained in the higher-order features. Thus, 
the normal TC5 level is practically invariant to phenology and 
can be captured very well by a simple first-order harmonic model. 
This is a key advantage over using the blue band itself and enables 
to reliably down-weight pixels affected by transparent artefacts. 
As with TCB, negative model residuals correspond to increased 
quality degradation. Fig. 2C describes the mapping of model 

residuals to quality degradation values between 0 (best quality) 
and 254 (very bad quality) using a piecewise linear function with 
parameters x1 and x2 set differently for TC5 and TCB. The derived 
degradation values have no particular interpretation, but simply 
reflect our choice of using 8-bit unsigned integer as output data 
type. We incorporate the computed quality degradation index 
into the observation model of the KF (Puhm et al., 2020). Absolute 
residual values below x1 will not cause any down-weighting of 
corresponding observations in the measurement update, while 
absolute residual values equal and above x2 cause corresponding 
observations to be disregarded entirely. This extension improves 
the signal tracking ability of the filter considerably, allowing us 
to produce filtered (i.e. radiometrically stabilized) versions of the 
input images. A simplified flowchart of the recursive filtering 
process is given in Fig. 3. 

We sequentially evaluate the KF colour-infrared images (CIR; 
Sentinel-2 bands B08, B04, B03) at the end of August to update the 
disturbance map using the workflow depicted in Fig. 3. There  are  
a few reasons why this date was considered as a good compromise 
for updating the annual disturbance map: (i) most of the new 
bark beetle calamities of the current season are already visible, 
(ii) the chance of acquiring high-quality imagery close before the 
target date is high, and (iii) sun elevation is still high, which 
increases the SNR. The filtered CIR imagery with reduced colour 
bit depth are published by Oehmichen et al. (2024) to complement 
the disturbance products. Our main underlying assumption is 
that, through the filtering process, the information of all images
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Figure 3. Flowchart of the recursive Kalman filter (KF) operation. The observation quality index is used to weight the innovations before the 
measurement update. 

available up to the respective target date has been considered to 
derive the best estimate of the current ground state in a near-real-
time manner. 

In the first step of the workflow, feature values are extracted 
at predefined sampling locations representing broadleaved and 
coniferous forest. In each study area, a regularly sampled grid of 
points using a spacing of 1 km is defined and reference forest type 
labels are extracted from the respective Copernicus High Reso-
lution Layer (Copernicus Land Monitoring Service, 2020). Using 
the extracted samples for each class, we set up three statis-
tical models. In Fig. 4, they are labelled M1, M2, and M3. For 
M2, the median Normalized Difference Vegetation Index (NDVI) 
provides a simple univariate decision boundary to label pixels 
with lower vitality, i.e. below the median NDVI of the respective 
forest class at the target date. For M1 and M3, we assume that 
both the characteristic reflectance of forest (M1) and spectral 
differences compared with the last year (M3) can be modelled 
as multivariate Gaussian distributions with the respective loca-
tion and covariance estimated for each class using the robust 
Minimum Covariance Determinant (MCD) algorithm (Rousseeuw, 
1984). These statistical models provide the means to label forest 
and nonforest pixels, as well as pixels with unusually large spec-
tral differences, based on certain levels of significance α given in 
Fig. 4. The feature space we work in has three dimensions; hence, 
each class is modelled by an ellipsoid in the feature space. The 
location and covariance estimated using the MCD method define 
the center of the ellipsoid, its proportions, and the orientation 
of its axes; the parameter alpha adjusts its size. Points inside 
the ellipsoid belong to the class, so the value of α tunes the 
decision boundary. The various decision boundaries of the models 
M1, M2, and M3 allow us to infer if a monitored pixel has a 
certain property or not. All pixels sharing a certain property 
form a set. However, one pixel can be an element of multiple 
sets. The legend in the bottom part of Fig. 4 summarizes how 
sets are represented in the illustration and which properties are 
inferred. 

In the second step of the workflow (lower half of Fig. 4), the 
initially empty (i.e. all pixels healthy) disturbance map is updated. 
Pixels may be moved not only from the set of healthy pixels to the 
set of disturbed pixels, but also the other way around (recovery). 

We isolate disturbance and recovery candidates by combining the 
different property labels derived in step one through set intersec-
tions. The intersection of two or more sets is defined as the set 
containing all elements that are members of every input set. The 
‘f lower-like’ elements of Fig. 4 are the graphical representations of 
the intersection operation, with the intersection result coloured in 
orange. 

For example, the properties isolating a new coniferous distur-
bance candidate are therefore the following: 

1) The pixel must be an element of the set of coniferous pixels 
according to the reference classification. This is denoted by 
the property label ‘Con’. 

2) The pixel must be an element of the set of healthy pixels in 
the previous epoch, denoted by the property label ‘Hprv’. 

3) The pixel must be an element of the set of nonforest pix-
els according to M1 (property label ‘nF’). This means that 
the pixel does not belong any more to the coniferous or 
the deciduous class based on a level of significance α = 1%.  
The quality of M1 in separating coniferous from deciduous 
forest is therefore of low importance as long as the overall 
approximation of the spectral appearance of healthy forest 
is acceptable. 

4) The pixel must be an element of the set of pixels with lower 
vitality according to M2 (property label ‘LoVc’). This means 
the pixel has an NDVI value lower than the median of all 
sampled coniferous reference pixels. By itself, M2 has the 
lowest power in isolating disturbances compared to the oth-
ers, but it effectively complements M1 and M3 by restricting 
the disturbance direction. 

5) The pixel must be an element of the set of pixels showing 
significant and anomalous spectral differences with respect 
to the previous epoch according to M3 (property label ‘Hi�c’). 
Recalling that normal spectral differences are modelled 
per forest class as multivariate Gaussian distribution, this 
means that the pixel’s difference vector fails a χ2 outlier test 
with level of significance α = 5%.  

To reduce the number of false positive detections in the prod-
uct and avoid having individual pixels show up as disturbance 
patches, we define a Minimum Mapping Unit (MMU) of 0.1 ha or
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Figure 4. Sequential evaluation of Kalman Filtered (KF) colour-infrared images (CIR, Sentinel-2 bands B08, B04, B03) at the end of August, used to 
update the disturbance map. In step one, statistical models are set up using feature samples extracted at predefined locations. The spectral (M1) and 
difference (M3) models use multivariate Gaussians with the respective location and covariance estimated for each class using the robust Minimum 
Covariance Determinant (MCD) algorithm. Step two illustrates the update process performed within the initial forest map, where pixels may be moved 
(indicated by arrows with −/+ signs) from the set of healthy pixels to the set of disturbed pixels, but also the other way around (recovery). 
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Figure 5. Example of growing disturbance patches. Disturbances 
detected between 2018 and 2020 are shown on the left side, and 
disturbances of the same area detected between 2018 and 2022 on the 
right side. Aerial images from 2020 and 2022 are displayed in the 
background (© GeoSN). 

10 adjacent pixels. A disturbance patch is therefore only included 
in the disturbance product if at least 10 adjacent pixels have 
been classified as disturbed by the algorithm ( Fig. 5). However, 
the MMU can be reached over multiple years because the state 
of residual disturbance pixels is saved, allowing us to also detect 
small, persistently growing disturbance patches. The individual 
classification date is recorded per pixel. Therefore, disturbances 
smaller than the MMU can contribute to the disturbance area of 
any given year in historic statistical evaluations. The map still 
does not include small and scattered disturbances never reaching 
the required MMU, but the spatial resolution of Sentinel-2 is also 
not lost entirely. 

The outlined workflow to derive the annual products is 
mostly data-driven and requires few user-defined parameters. 
We determined appropriate values for the significance levels α 
by evaluating the performance with training data, as described 
in the following section. We used a single set of parameters 
for the entire processing chain for all study areas together. 
While our product update rate is only annual, there are also 
two important near-real-time aspects involved. Firstly, the 
workflow design allows quick product generation after the 
target date, as the computationally expensive processes (Pre-
processing, KF operation) can already happen incrementally over 
the year. Secondly, the advanced signal tracking implementation 
allows the product to be highly up-to-date at the time of 
publishing. 

Reference imagery 
We used high-resolution aerial orthoimages and satellite imagery 
as a reference to collect training and validation data. The 
orthoimages have a spatial resolution between 0.1 and 0.2 m. 
The satellite imagery was acquired by the sensors Pléiades-1B 
(0.5 m), WorldView-2 (0.5 m), and PlanetScope (3 m). Additionally, 
to enhance the level of detail and information, we used canopy 
height models with spatial resolutions between 0.5 and 1 m. Image 
enhancement techniques, i.e. contrast and histogram adaptation, 
were applied to guarantee optimal visual interpretation. Position 
accuracies of the reference imagery were 5 m or better. For 
validation, we selected reference imagery as close as possible 
to 31 August to ensure good agreement with the disturbance 
product target date. Imagery between end of July and beginning 
of October was available for 17 of the 20 validation sets. For the 

remaining three validation sets, we used imagery of mid-June and 
mid-October. 

Training data 
The training data rely on reference imagery from 2018 to 2021. 
We created training polygons with a minimum area of 0.1 ha 
and with a minimum width of 20 m. For the annual product, 
we used the training data primarily to tune the statistical model 
parameters (e.g. in Fig. 2). We additionally used the training data 
for a separability analysis of different disturbance types. We do 
not present and discuss the results of this separability analysis 
in this manuscript, but this additional study explains the very 
detailed training data nomenclature, which is more detailed than 
would be required for a simple detection of annual forest change 
areas. The selected disturbance types for training the product are 
‘windthrow’, ‘bark beetle’, ‘gypsy moth’, ‘complex disturbance’, 
‘indeterminate disturbances’, and ‘undisturbed’ areas (examples 
in Fig. 6). Complex disturbance refers to damage caused by 
drought stressor a combination of drought stress and pest 
infestation. The term ‘indeterminate’ represents disturbances of 
indeterminate origin and trees that have already been removed 
from the forest for unidentified reasons, including salvage 
logging and regular forest management practices. Additionally, 
we classified the disturbances into ‘scattered’ and ‘complete’ 
categories. ‘Scattered’ denotes areas with 30%–90% canopy cover 
disturbance, and ‘complete’ refers to training polygons with >90% 
disturbance (Table 2). 

Validation 
For the validation of our product, we adhered to the best prac-
tice guidelines for assessing the accuracy of land cover change 
described by Olofsson et al. (2014) and elaborated on by Stehman 
and Foody (2019). The validation workflow consisted of the fol-
lowing steps: stratification (i), random sampling (ii), independent 
validation (iii), plausibility check (iv), and accuracy calculation (v). 

We stratified the forest area into three strata prior to dis-
tributing the validation samples, to ensure a sufficient sample 
size in all areas where we expected different product accuracies. 
We expected the lowest accuracy in the transition area between 
disturbed and undisturbed forest, as this was previously observed 
in similar studies (e.g. Arévalo et al., 2019; Francini et al., 2022). 
This area is defined as a buffer stratum, which was analysed 
separately to accurately assess the omission and commission 
error of the disturbed area. It is comparable to the buffer stratum 
discussed in Olofsson et al. (2020) and used in similar studies 
(Francini et al., 2022; Thonfeld et al., 2022). The other two strata are 
the undisturbed stratum and the disturbed stratum. We expected 
the highest product accuracy in the undisturbed stratum and 
an intermediate accuracy in the disturbed stratum. The three 
strata were derived from the disturbed areas (i.e. the patches) 
identified by the product. The buffer stratum was equivalent to a 
10-m buffer inside and outside the circumference of the disturbed 
area. The disturbed stratum represented the remaining parts of 
the disturbed area, and the undisturbed stratum represented the 
remaining parts of the undisturbed forest area (Fig. 7). 

Based on the available reference imagery, we created a diverse 
collection of 20 datasets, which we refer to as validation sets. 
Validation sets either cover different years or different regions and 
are located in regions that contain sufficient disturbance pixels 
for validation. They include various disturbance characteristics, 
such as different disturbance types, intensities, and disturbance 
years, to ensure a representative validation data set. The formula 
to calculate the necessary sample size for the random sampling
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Figure 6. Field photos of different disturbance types in our study areas. (A) Complex disease on European beech (Fagus sylvatica) in Bavaria, (B) gypsy 
moth infestation in June on oak (Quercus spp.) in Bavaria, (C) cleared area, red and grey attack state of bark beetle infestation in Lower Saxony, and (D) 
windthrow in Saxony (© Philip Beckschäfer, Falkhardt Dau, Hannes Lemme, Christoph Straub). 

Table 2. Different disturbance types covered in the training data based on the reference imagery. Information on the years covered, 
dominant forest tree species, and the extent of both scattered and complete disturbance for each disturbance type. Complete 
disturbance refers to areas with >90% disturbance. 

Primary disturbance type Study areas Years Dominant tree species Disturbance extent [ha] 

Scattered Complete 

Windthrow A–D 2018–20 Spruce and pine 3927 3207 
Bark beetle A–D 2018–21 Spruce 2014 1328 
Complex disturbance C, D 2019–21 Beech 348 2 
Gypsy moth D 2019 Oak 453 306 
Indeterminate A, C, D 2018–20 Spruce 698 3612 
Undisturbed A–D 2018–21 Broadleaf and conifer 4581 (undisturbed) 

per validation set (Formula 1) was adapted from Olofsson et al. 
(2014). 

n = 

⎛ 

⎝
∑

Wi 
√

Ui (1 − Ui) 

S
(
Ô

)
⎞ 

⎠ 
2 

(1) 

where i = stratum,  S(Ô) = standard error of the overall accuracy 
(defined as 0.01), Wi = fraction of the area of the stratum relative 
to the total area, and Ui = expected accuracy in the stratum. 

The sample size depends on the relative sizes of the strata 
and the expected user’s accuracy of each stratum. We expected a 
user’s accuracy of 90% in the disturbed stratum, 75% in the buffer 
stratum, and 95% in the undisturbed stratum. These expectations 
were slightly higher than suggested by Olofsson et al. (2014) and 
were based on our experience with similar forest disturbance 
products. The disturbed and buffer strata often made up <5% of 
the total forest area. A proportional distribution of the sample 
points would therefore result in only very few points located 
within these strata and lead to large standard errors for their 
accuracies. Instead, we followed the recommendation of Olofsson 

et al. (2014) to randomly distribute a minimum of 100 samples 
in each stratum. Whenever possible, we generated points with 
a minimum distance of 50 m to each other to avoid clustering. 
In total, we created 20 independent validation sets for 2019 to 
2022. They cover either different years, different regions or both. 
In total, we validated 11 019 sample points, ranging from 486 to 
732 samples per validation set (Fig. 8). 

To assess the product performance, we not only used the same 
reference imagery that was used for training but also incorpo-
rated additional reference imagery from 2022, which we used 
exclusively for validation purposes. Multiple interpreters manu-
ally evaluated whether the Sentinel-2 pixel intersecting the sam-
ple point was disturbed on >50% of its area and whether the total 
disturbance size reached the defined MMU. If both factors were 
met, we considered the point disturbed; otherwise, we considered 
it undisturbed. We discarded points in cases where the pixel 
was not stocked, the pixel was already disturbed in older refer-
ence imagery, the MMU was difficult to assess, or the reference 
imagery was of insufficient quality due to clouds or shadows. 
The interpreters were not aware of the product prediction at this

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/advance-article/doi/10.1093/forestry/cpae038/7710650 by guest on 31 July 2024



10 | Reinosch et al.

Figure 7. Schematic figure of the three strata used for stratified random 
sampling. The disturbed area shows the product’s classification result, 
and the buffer stratum is equivalent to a 10 m buffer inside and outside 
its circumference. The disturbed and undisturbed strata represent the 
remaining forest areas inside and outside the disturbed area, 
respectively. 

stage of the validation, to ensure an independent assessment. We 
primarily evaluated the product accuracy with an MMU of 0.1 ha, 
but for comparison, we also evaluated the effect of an increased 
MMU of 0.25 ha within five selected validation sets. This allowed 
us to evaluate the influence of the MMU on the accuracy of the 
product. 

It was sometimes difficult to determine whether a pixel was 
sufficiently disturbed, due to scattered disturbance patterns, par-
tially disturbed pixels, or low quality of the reference imagery. We 
therefore created an extensive validation guideline for all photo 
interpreters to ensure the interpretation was as comparable as 
possible. We therefore also performed an additional plausibility 
check, where we looked again at sample points for which the 
map class and the blind interpretation did not agree. We consid-
ered these sample points correctly classified if the product class 
was plausible. To that end, we assessed the reference imagery 
and the product together. We considered sample points with 
partial disturbance plausible, especially those adjacent to large 
disturbed areas. The geometric accuracy of Sentinel-2 pixels is 
in the range of 10–12 m (Gascon et al., 2017) which is further 
improved during coregistration. We therefore evaluated whether 
the product prediction would be correct if the pixel was moved 
by a few metres. Accuracies given in the results section include 
the plausibility check, whilst accuracies without the plausibility 
check are presented in the Supplementary Material 2. 

To estimate the product accuracies, we generated area propor-
tional error matrices according to Stehman (2014). We  used  the  
overall accuracy (OA), the user’s accuracy (UA), the producer’s 
accuracy (PA), and the F1 score to describe the product’s reliability. 
The OA describes the percentage of the area classified correctly by 
the product (Formula 2). The UA, also known as precision, repre-
sents the percentage of the area classified as the disturbed area 
that was confirmed to be disturbed through comparison with the 
reference imagery (Formula 3). It therefore gives us information 
about the commission error or where the product overestimates 
the disturbance. The PA, also known as recall, represents the 
percentage of disturbed area correctly classified by the product 
(Formula 4). It provides information about the omission error or 
where the product underestimates the disturbance. The F1 score 
represents the harmonic mean of UA and PA (Formula 5) We  

always used UA, PA, and F1 in reference to the disturbed area and 
never in reference to the undisturbed area. The area weighted 
analysis allowed us to calculate accuracy metrics for individual 
validation sets, as well as summarized metrics for varying groups 
(e.g. by year, study area, or stratum) and all validation sets com-
bined. 

OA = TP + TN 
TP + TN + FP + FN 

(2) 

UA = 
TP 

TP + FP 
(3) 

PA = 
TP 

TP + FN 
(4) 

PA = 2· TP 
2· TP + FP + FN 

(5) 

where TP = true positive, FP = false positive, FN = false negative, 
and TN = true negative. 

Results 
The purpose of our annual forest disturbance product is to reliably 
detect and map forest disturbances with a uniform method for all 
forests in Germany. The diverse disturbance patterns in German 
forests necessitated an equally varied and spatially distributed 
validation setup to ensure a representative validation result with 
reliable accuracies. To that end, we extensively validated our 
product with 20 separate validation sets spread across four study 
areas (A–D) in different parts of Germany (see Fig. 1 for loca-
tions). For all four study areas combined, our disturbance product 
achieved an overall accuracy (OA) of 99.1 ± 0.1%. Disturbed areas 
were detected with a user’s accuracy (UA) of 84.4 ± 2.0% and a 
producer’s accuracy (PA) of 85.1 ± 3.4% resulting in an F1-score 
(F1) of 84.7% (Fig. 9). All values for UA, PA, and F1 refer only to the 
accuracy of the disturbed area and not the undisturbed area. All 
values, including the OA, are area-weighted accuracies. Accura-
cies were highest for the undisturbed stratum and lowest for the 
buffer stratum. On average, OA was 93.4 ± 1.1% in the disturbed 
stratum, 84.8 ± 2.0% in the buffer stratum, and 99.7 ± 0.1% in the 
undisturbed stratum. Without the plausibility checks, the OA was 
98.6 ± 0.1%, the UA was 74.9 ± 2.4%, the PA was 76.6 ± 3.7%, and 
the F1 was 75.7%, for all validation sets combined. 

Accuracies in the four study areas 
Comparing the study areas, we observed an OA of at least 
95.8 ± 1.1% in all cases. UAs of the disturbed area ranged from 
75.2 ± 5.5% for study area (C) to 92.4 ± 3.2% for study area (A). 
PAs ranged from 76.3 ± 11.2% for study area (C) to 96.2 ± 2.8% for 
study area (D). Study areas (B) and (C) had similar UAs and PAs. 
Differences were larger between the accuracies in study areas (A) 
and (D). In the following, we refer to individual validation sets by 
their location with their validation year in parentheses. A list of 
all validation sets and their corresponding accuracies is included 
in the Supplementary Material 1. 

Study area (A) consists of three validation sets, all conducted 
within the same area of the Harz National Park in the years 2019, 
2021, and 2022. Most disturbances were caused by continual bark 
beetle infestation (NW-FVA, Fig. 10A). These validation sets had 
the lowest OA, i.e. 93.5 ± 2.1% to 97.8 ± 1.4%. The disturbances 
covered 7.5 ± 0.2% to 33.0 ± 0.4% of the forest area, which was 
the largest percentage of all validation sets. UA ranged from 
76.5 ± 11.5% to 93.8 ± 4.8%, PA from 75.2 ± 13.7% to 95.9 ± 5.8%, 
and F1 from. In Harz (2019, 2021), the UA exceeded the PA by ∼18%, 
indicating an underestimation of the actual disturbance extent.
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Figure 8. Extents of the five validation sets in study area B (acquisition year in parenthesis). The sample points (total number in parenthesis) are given 
for the Chemnitz subset. 

Figure 9. Overall accuracy for both disturbed and undisturbed forest, as 
well as user’s and producer’s accuracies of disturbed forest in the four 
study areas, and the combined accuracies of all four study areas 
together. The error bars represent the 95% confidence intervals. 

In Harz (2022), the PA exceeded the UA by 19.4%, indicating an 
overestimation. 

Study area (B) included three validation sets from 2020 and one 
validation set each from 2021 and 2022. The validation sets were 
spread across Saxony. They included both small, isolated distur-
bance patches of indeterminate origin and large, steadily grow-
ing patches related to bark beetle infestation (SBS, Fig. 10B). UA 
ranged from 70.4 ± 10.9% for the validation set for Southeast Sax-
ony (2022) to 93.6 ± 5.5% for the validation set for Chemnitz (2020). 

In both cases, most disturbances were bark-beetle related, but 
Chemnitz (2020) mainly featured large disturbance patches. PA 
were high, i.e. 84.0 ± 10.1% to 100.0 ± 0.0% for all validation sets, 
except for Chemnitz (2020) where the PA was only 68.9 ± 31.0%. 

Study area (C) consisted of five validation sets from 2020 to 
2022 in south-western Baden-Wuerttemberg, including the Black 
Forest. The disturbance patches were generally smaller than in 
the other study areas, scattered, and often bark-beetle related 
(FVA-BW, Fig. 10C). This study area had the lowest overall UA 
and PA. UA ranged from 51.7 ± 11.6% to 84.0 ± 7.5% and PAs from 
60.5 ± 37.3% to 85.5 ± 24.5%. The two lowest UA in this study area 
were for the Black Forest (2020) and Baar (2021) validation sets, 
with 51.7 ± 11.6% and 59.4 ± 13.0%, respectively. They included 
385 ± 33 ha and 78 ± 13 ha of disturbed area, representing only 
1.2% and 0.1% of the forest area, respectively. The highest UA 
(84.0 ± 7.5%) was for the Waldshut (2020) validation set, which was 
also where the most disturbance occurred, covering 2968 ± 73 ha. 

Study area (D) included seven validation sets from 2019 to 
2022 in northern Bavaria. Disturbance patterns and causes were 
very diverse and even included temporary disturbances due 
to gypsy moth infestations (LWF, Fig. 10D). UA were high, i.e. 
82.5 ± 9.7% to 96.6 ± 4.1%, except for the Lower Franconia (2019) 
validation set. There, the disturbances consisted of scattered 
complex disturbance and large-scale gypsy moth infestation. The 
corresponding UA was only 31.0 ± 8.4%, which was the lowest of
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Figure 10. Examples of different spatial and temporal patterns of disturbance in the four study areas. The letters A to D refer to the study areas 
displayed in (Fig. 1). A: Extreme bark beetle infestation of spruce stands in the Harz mountains (NW-FVA). B: Heavy bark beetle infestation in Saxon 
Switzerland National Park (SBS). C: Scattered disturbance of mostly indeterminate origin in the southern Black Forest (FVA-BW). D: Complex disease 
and gypsy moth infestation in broadleaf stands in northern Bavaria in 2018 and 2019 (LWF). 

all validation sets. PA ranged from 85.9 ± 24.0% to 100.0 ± 0.0% 
across all validation sets, resulting the highest combined PA 
among all study areas. The four validation sets with large-scale 
bark beetle disturbances had high accuracies, as in the other 
study areas. Notably, the Franconia (2021) validation set, with 
mainly small patches of scattered disturbances, also scored very 
high, with a UA of 88.5 ± 7.5% and a PA of 96.4 ± 4.9%. 

Mapped and actual disturbance extent 
Besides assessing the accuracy of our product when mapping 
individual disturbance patches, we also evaluated how reliably it 
mapped the total disturbance extent. The total disturbance extent 
represents the sum of all disturbance patches for a chosen region 
and period. For the forest area covered by the validation sets, 
our product mapped 27 582 ha of forest disturbance during the 
entire observation period of September 2018 to August 2022. This 
represented 2.86% of the total forest area. Using our validation 
sets, we estimated the error-adjusted actual disturbance extent at 
26 847 ± 201 ha, or 2.78 ± 0.02% of the total forest area. Overall, our 
product therefore slightly overestimates the actual disturbance 
extent. 

We also evaluated the disturbance extent for individual years 
to assess inter-annual variations (Table 3). The mapped distur-
bance extent was outside the confidence interval of the actual 
disturbance extent for all years. For 2020 and 2021, the product 
underestimates the disturbance extent by 9.1% and 5.8%, respec-
tively. For 2019 and 2022, we observe overestimations of 11.1% 

and 22.9%. This overestimation in 2022 is consistent across all five 
validation sets. 

Comparing minimum mapping units 
Applying a larger MMU resulted in notably higher accuracies 
for three of the five validation sets, at the cost of reducing the 
total detected disturbed area (Table 4). The validation set for 
Southeast Saxony (2020) had a F1 of 84.2% with an MMU of 
0.1, but an increased F1 of 98.3 % with an MMU of 0.25. The 
F1 of the Franconian Forest (2020) validation set also increased 
from 87.6% to 94.1% when we increased the MMU. For Baden-
Wuerttemberg (2021), we similarly observed an increase of 68.8% 
to 84.7% for the F1. The remaining two validation sets did not show 
notable changes in their accuracies. Naturally, increasing the 
MMU reduced the total disturbed area detected by the product. 
This reduction in the total disturbed area ranged from 4.9% for 
the Harz (2021) validation set up to 30.9% for Southeast Saxony 
(2020). 

Discussion 
Overall, we observe high UA (84.4 ± 2.0%), PA (85.1 ± 3.4%), and 
F1 (84.8%) when evaluating all validation sets together. However, 
we also note large site-specific variations in the accuracies of 
our product for the different validation sets. Hence, individual 
validation sets at a local scale were not representative of a region 
with diverse disturbance patterns, such as Germany. These find-
ings were only possible because we evaluated a larger number of
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Table 3. Accuracy and disturbance extent of validation sets, with their 95% confidence intervals grouped by year and with all years 
combined. User’s and producer’s accuracies refer only to disturbed forest, while overall accuracy also includes undisturbed forest. 
Disturbance extent is the sum of all disturbance patches of the respective year. Mapped disturbance refers to the disturbances mapped 
by our product. Error-adjusted disturbance describes the actual disturbance extent corrected with the validation sets. 

Year Accuracy [%] Disturbance extent [%] 

Overall 
accuracy 

User’s accuracy Producer’s 
accuracy 

F1-Score Mapped 
disturbance 

Error-adjusted 
disturbance 

2019 97.4 ± 0.8 75.6 ± 4.1 79.1 ± 11.3 77.3 6.21 5.59 ± 0.14 
2020 98.8 ± 0.4 82.0 ± 4.3 77.4 ± 9.4 79.6 2.71 2.98 ± 0.05 
2021 99.6 ± 0.1 94.0 ± 1.7 84.6 ± 4.1 89.1 1.80 1.91 ± 0.02 
2022 98.4 ± 0.4 78.0 ± 5.0 94.7 ± 4.7 85.5 6.22 5.06 ± 0.08 
Combined 99.1 ± 0.1 84.4 ± 2.0 85.1 ± 3.4 84.7 2.86 2.78 ± 0.02 

Table 4. Comparison of product accuracies for MMUs of 0.1 and 0.25 ha. Validation set refers to the validated sets of sample points, 
with the validation year in parentheses. Study area indicates in which of the four study areas displayed in Fig. 1 we performed the 
validation. The overall accuracy, user’s accuracy, producer’s accuracy, median size of a disturbance patch, and total disturbed area are 
compared. 

Validation set Study area MMU [ha] Overall 
accuracy [%] 

User’s 
accuracy [%] 

Producer’s 
accuracy [%] 

F1-Score 
[%] 

Median 
disturbance 
patch size [ha] 

Total 
disturbance 
extent [ha] 

Harz (2021) A 0.1 93.5 ± 2.1 98.8 ± 1.3 81.1 ± 5.4 89.1 0.32 6683 ± 78 
0.25 93.7 ± 2.1 96.9 ± 2.2 82.6 ± 5.4 89.2 0.77 6356 ± 72 

Southeast Saxony (2020) B 0.1 98.2 ± 0.7 84.3 ± 6.8 84.0 ± 10.1 84.1 0.28 2399 ± 63 
0.25 99.9 ± 0.1 97.7 ± 3.2 98.8 ± 2.3 98.2 0.54 1658 ± 42 

Baden-Wuerttemberg (2021) C 0.1 99.9 ± 0.0 59.4 ± 13.0 81.7 ± 12.9 68.8 0.20 641 ± 36 
0.25 99.8 ± 0.1 73.5 ± 9.9 100.0 ± 0.0 84.7 0.44 470 ± 29 

Franconian Forest (2020) D 0.1 99.7 ± 0.1 87.2 ± 8.8 87.9 ± 8.9 87.5 0.18 252 ± 20 
0.25 99.9 ± 0.1 91.1 ± 5.9 97.2 ± 3.9 94.1 0.40 186 ± 16 

Franconian Forest (2021) D 0.1 99.9 ± 0.1 96.6 ± 4.1 95.7 ± 4.7 96.1 0.24 1990 ± 49 
0.25 99.9 ± 0.1 96.6 ± 3.8 95.5 ± 4.3 96.0 0.49 1830 ± 41 

validation sets in different regions and with different disturbance 
types, patch sizes, and disturbance severity. We cover the most 
frequent causes of disturbance in Germany including windthrow, 
bark beetle infestation, and complex disease ( Bolte et al., 2022). 
The study areas also include disturbances impacting the four 
main tree species in Germany: Norway spruce, Scots pine, Euro-
pean beech, and oak (Thuenen-Institute, 2012). Together with the 
large number of samples considered, we are therefore confident 
that the accuracies we present are reliable estimates for most 
German forests. 

However, we could not cover all forested regions within our 
study areas, mostly due to a lack of high-quality reference 
imagery. Also, neither the high mountain areas of the European 
Alps, at Germany’s southern border, nor the flat lowlands of 
Germany’s northern states were part of the FNEWs study areas. 
Furthermore, our sample sizes are not balanced regarding the 
causes of disturbance. Bark beetle infestation, windthrow, and 
indeterminate disturbances make up the vast majority of both 
our training and validation datasets. Complex disturbance and 
gypsy moth infestation are present in larger numbers only in 
one validation set. On a local scale, the accuracy of our product 
may therefore differ from the summarized accuracy of all our 
validation sets. In addition, we originally chose the FNEWs project 
study areas based on previously known forest disturbances and 
these sites thus represent forest regions that were more severely 
affected by disturbances than the nationwide average. 

Applying an MMU of 0.1 ha to our disturbance detection helps 
to reduce noise and false positive detection especially near forest 

edges where shadows cause variations in the spectral reflectance 
of pixels. The noticeably lower accuracy we observed for smaller 
disturbance patches, like in study area (C), suggests that the MMU 
is necessary as smaller disturbances are not detected reliably. 
Scattered small-scale disturbances are underestimated, as they 
rarely reach the required 10 adjacent pixels to be included in our 
product. Damages due to drought stress may affect only individ-
ual trees, which our product does not detect. While these small-
scale disturbances are not the focus of our product, underesti-
mating scattered disturbances does limit the application for forest 
practitioners requiring more detailed disturbance detection. 

OA is lowest in the buffer stratum with 84.8%, whereas values 
were 93.4% in the disturbed stratum and 99.7% in the undis-
turbed stratum. This confirms our expectation that the product’s 
accuracy is lowest for the buffer stratum and it highlights the 
importance of the buffer stratum when evaluating a forest dis-
turbance product. Of the 11 019 sample points, 10.2% could not 
be evaluated. This was the case where the size or extent of a 
disturbance patch was unclear, the reference data was insuffi-
cient (e.g. clouds in imagery), or the forest map was inaccurate. 
The forest map that we apply to define the forest area in which 
we detect the changes has an OA of 96.5% (Langner et al., 2022). 
We observe errors in the forest map most frequently near (forest) 
roads or where the extent of a prior disturbance is not detected 
perfectly. As these points were not evaluated further (neither 
correct nor incorrect), our accuracy metrics and error-adjusted 
area estimations are unaffected by errors in the forest mask. 
However, mapped disturbances and pixel-based area estimations
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may have included these regions and suffered from these masking 
errors. This highlights the importance of a reliable forest map for 
all disturbance studies. 

Regional variations 
OA tends to be lower in the validation sets with higher distur-
bance proportions, such as Harz (2019, 2020 and 2022). This is 
to a large degree due to the fact that undisturbed forest areas 
are classified with higher certainty than areas with disturbance. 
Due to the weighting by stratum size, a higher percentage of 
undisturbed forest results in a higher OA. Consequently, OA is 
mostly a representation of the accuracy in the undisturbed forest 
and is by itself a poor metric to evaluate the product’s accuracy 
in detecting disturbance. Together with the high accuracy in the 
disturbed stratum, the very high OA suggests, however, that only 
a few completely incorrect disturbance patches were detected. 
UA and PA of the disturbed class provide better information 
than OA for assessing how accurately disturbance was detected. 
Validation sets with many small disturbance patches, scattered 
disturbance, and a small total number of disturbed areas tend 
to have a lower UA and PA. We observe this particularly in study 
area (C) for the Black Forest (2020) and Baar (2021) validation sets. 
Small disturbance patches were almost entirely located within 
the buffer stratum, where the accuracy is lowest. The accuracies 
of validation sets with many small disturbance patches and a 
larger buffer stratum area percentage were therefore lower. 

The lowest UA (31.0%) corresponds to the Lower Franconia 
(2019) validation set. It consisted of disturbances from gypsy moth 
infestation and scattered complex disturbance (Fig. 10C). The low 
UA indicated a greatly overestimated disturbance extent. Refer-
ence imagery showed that the gypsy moth infestation peaked at 
the end of June leading to widespread defoliation. By the end of 
August, at the reference date of the annual product, the affected 
forest stands were largely foliated again. Due to the still reduced 
vitality of the forest, the product still identified large disturbed 
areas. This example also illustrates the limits of the annual 
assessment of our monitoring system. In this case, the filtered 
imagery used to create the product still reflected a more severe 
state of disturbance than what existed in real time, because of 
a temporal lag of the model adaptation introduced by the time-
series filtering process. During the manual validation, these areas 
were marked as undisturbed by the interpreter, as their damage 
had only been temporary and peaking in June, but by end of 
August, the forest stands had largely recovered. This disagree-
ment leads to a very low UA for gypsy moth disturbances. Tem-
porary defoliating disturbances seem to lead to an overestimation 
of disturbance extent. However, in the long term, this temporary 
overestimation is unproblematic for our monitoring system, as 
these temporary disturbances are reintegrated automatically into 
the forest mask over the following 2 years. 

Mapped disturbance extent 
Overall, the total mapped disturbance extent provides a good 
estimate of the actual disturbance extent. This is also supported 
by the similar value ranges of omission and commission errors. 
Accurately estimating the total disturbed area is very important 
for decision makers to assess the extent to which the forest is 
affected and to distribute the required funds to forest managers. 
For the validation sets from 2022, we observe a noticeable overes-
timation of the actual disturbance area, by ∼23%. This was likely 
in part caused by the very dry spring and summer and subsequent 
drought stress in 2022 (Bissolli et al., 2022). Grasslands responded 
more quickly to drought stress than forests during the drought 

year of 2018 (Reinermann et al., 2019). Sentinel-2 pixels at forest 
edges or in forests with sparse canopy were often covered by both 
trees and the surrounding landscapes, such as grassland. The 
rapid response of the surrounding vegetation may have reduced 
the perceived vegetation vitality in a pixel sufficiently to register a 
forest disturbance, even if the trees themselves appeared largely 
unaffected in the reference imagery. Furthermore, during the 
manual validation, it was often difficult to assess whether dam-
age from drought stress was permanent or temporary. Another 
likely reason for the observed overestimation is that 2022 imagery 
was not included as training data during model parameterization. 

Comparison to similar studies 
There is an increasing number of local and regional studies focus-
ing on forest disturbance mapping and monitoring with satellite 
data (e.g. Laurin et al., 2021; Dalponte et al., 2022; Francini et al., 
2022; Thonfeld et al., 2022). Here, we compare the validation 
results for our product with those from three disturbance product 
studies similar to ours in terms of scale, location, methodol-
ogy, and rigorous validation. Thonfeld et al. (2022) used monthly 
composites of Sentinel-2 and Landsat-8 imagery to assess forest 
disturbance in Germany between 2018 and 2020, with an MMU of 
0.03 ha. Their monthly temporal resolution was therefore higher 
than that of the annual product presented in the present study. 
Their validation approach is similar to ours, as they also include 
a buffer stratum for their random sampling. They achieve a UA of 
71%, compared with our 84.4%, and a PA of 92%, compared with 
our 85.1%. Their UA was much lower than their PA, indicating a 
noticeable overestimation of the actual disturbance area in their 
product. It is difficult to assess whether their product accuracies 
are representative for all of Germany, as they do not specify where 
the validation samples were located. They also validate only 1538 
sample points, compared with our 11 019, and distributed the 
points differently among the three strata. Furthermore, the width 
of their buffer stratum is larger than ours and only drawn on 
the outside of the product shape. A direct comparison of the 
accuracies is therefore difficult. 

The product of Francini et al. (2022) shows forest disturbances 
in Italy between August 2017 and August 2018, with an MMU of 
0.05 ha. Their validation approach is very similar to ours, though 
their buffer stratum extends 10 m farther from disturbed areas. 
They provide no overall accuracy values but instead present the 
accuracies for their three strata, based on 19 300 sample points 
overall. They reported a UA of 94.2% for the disturbed stratum, 
compared to our 93.4% for the same stratum. For the buffer 
stratum, their product achieves a UA of 80.2% and a PA of 46.6%, 
suggesting that it greatly underestimated the disturbance in that 
stratum. In the same stratum, our product achieved a UA of 78.2% 
and a PA of 89.7%, indicating that it overestimated the disturbed 
area slightly. As with Thonfeld et al. (2022), a direct comparison 
of our results to the accuracies reported by Francini et al. (2022) 
is not meaningful, as decisive parameters were chosen differently 
or are not documented in detail in their publication. 

The open-source python package ‘Fordead’ by Dutrieux et al. 
(2021a) was developed as a consequence of the intense bark 
beetle crisis in spruce trees in northeastern France from 2018 to 
2020. A validation was only conducted for bark beetle damage on 
coniferous stands, utilizing 619 classified reference areas from the 
BDforet dataset (Dutrieux et al., 2021b). The observed frequencies 
of the three classes (healthy, damaged, and cut) did not align 
proportionally with the distribution in the study area, but are 
based on their occurrence in the dataset. The detection of small-
scale anomalies remains unevaluated due to missing reference
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areas smaller than 0.5 ha in the dataset. Their PA of damaged 
area was 85% with a UA of 90.1%. A direct comparison to our 
product is difficult as they used more classes and validated in 
much smaller and less diverse forest areas, but their accuracies 
are similar to ours for validation sets with mostly bark beetle– 
related disturbances. 

The documentation of our thorough validation process is of 
great importance. Covering 22% of the stocked forest area of 
Germany, the size and distribution of our study areas make our 
summarized accuracies a very reasonable accuracy estimate for 
all of Germany. Although other studies have involved a smaller 
MMU, the MMU of this study was chosen consciously to balance 
a relevant disturbance patch size with a trustworthy accuracy. 
Thus, our product is a valuable contribution, due to its high 
accuracy, detailed validation, and readiness for a uniform and 
continuous monitoring system of Germany’s forests. 

Conclusion 
The forest disturbance product we present here scores high values 
for UA (84.4 ± 2.0%), PA (85.1 ± 3.4%) and F1 (84.8%) when all 11 019 
sample points were evaluated together. The total disturbance area 
is estimated accurately for most years. The exception was the 
year 2022, when drought stress may have led to an overestimation 
of the disturbance area around forest edges. Our emphasis on 
the validation of this product highlights several issues. First, site-
specific conditions, such as the cause of the disturbance, the size 
of disturbance patches, and the disturbance severity, can lead to 
large variations in the product’s accuracy. It is therefore difficult 
to assess the extent to which a validation of individual sites is rep-
resentative of a region with diverse disturbance patterns, such as 
Germany. Our study also emphasizes the importance of choosing 
many different and diverse sites to achieve a more representative 
result for the validation. Second, the optimal MMU depends on 
the planned further application of the product. A larger MMU will 
produce better overall accuracies, as small disturbance patches 
that are generally detected at a lower accuracy will be excluded. 
However, this comes at the cost of a lower accuracy when esti-
mating the total disturbed area. The smaller patches, between 
0.1 and 0.25 ha, represented up to 30.9% of the total disturbed 
area, which is why we chose a smaller MMU of 0.1 ha for the 
final annual product. Lastly, it is important to choose a suitable 
stratification to distribute the sample points. The disturbance 
area is much smaller than the undisturbed area in most cases, 
and stratification is necessary to ensure that enough sample 
points lie within the disturbed area. Furthermore, we recommend 
a buffer stratum between the disturbed and undisturbed area, 
as our accuracy was lowest there (OA 84.8 ± 2.0%). The buffer 
should extend into both the disturbed and the undisturbed area 
to facilitate assessments of both omission and commission errors. 

Considering the large dimensions of forest disturbances, and 
the more severe weather phenomena expected in the future, 
automated monitoring systems of forest areas play a central 
role in their protection and management. Our product is an 
important step towards making uniform large-scale forest distur-
bance analysis available to forest managers and decision makers. 
Furthermore, the validation methodology presented here could 
potentially be used as a template for future accuracy analyses of 
large-scale geodata, regardless of its thematic content. 
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